
Science of Computer Programming 232 (2024) 103031

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Original software publication

A monitoring tool for linear-time 𝜇HML

Luca Aceto b,c, Antonis Achilleos b, Duncan Paul Attard a,b,∗, Léo Exibard b,
Adrian Francalanza a, Anna Ingólfsdóttir b

a University of Malta, Msida, Malta
b Reykjavik University, Reykjavik, Iceland
c Gran Sasso Science Institute, L’Aquila, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

Runtime verification

Linear-time properties

Monitor synthesis

We present detectEr, a monitoring tool that targets software applications written for Erlang/OTP.
The tool runtime checks specifications expressed in a safety fragment of the linear-time modal
𝜇-calculus called MAXHMLD, used to describe properties about the current system execution. Our
technical development is founded on previous theoretical results that are lifted to a first-order
setting, where systems produce executions containing events that carry data. We overview the
main features of detectEr, showing how properties can be flexibly written and synthesised as
executable Erlang monitors that can be instrumented with the running system.

Code metadata

Code metadata description

Current code version 0.9

Permanent link to code/repository used for this code version https://github.com/ScienceofComputerProgramming/SCICO-D-22-00294

Permanent link to Reproducible Capsule https://zenodo.org/record/6418234#.ZEvVZy8Ro04

Legal Code License GPL-3.0 license

Code versioning system used git

Software code languages, tools, and services used Erlang

Compilation requirements, operating environments and dependencies Linux, macOS, Windows, and Erlang

If available, link to developer documentation/manual https://duncanatt.github.io/detecter

Support email for questions duncanatt@gmail.com

1. Motivation and significance

This paper presents detectEr, a runtime verification (RV) tool that targets software applications written for the Erlang/OTP [1].

detectEr builds on the theoretical foundations of [2,3], which are lifted to a first-order setting [4] to handle systems that operate on
data. Our tool adopts the logic fragment MAXHMLD to specify properties about the current system execution [5]. Fig. 1a illustrates

The code (and data) in this article has been certified as Reproducible by Code Ocean: https://codeocean .com/. More information on the Reproducibility Badge
Initiative is available at https://www .elsevier .com /physical -sciences -and -engineering /computer -science /journals.

* Corresponding author.

E-mail addresses: luca@ru.is, luca.aceto@gssi.it (L. Aceto), antonios@ru.is (A. Achilleos), duncan.attard.01@um.edu.mt, duncanpa17@ru.is (D.P. Attard),
Available online 27 September 2023
0167-6423/© 2023 Elsevier B.V. All rights reserved.

leoe@ru.is (L. Exibard), afra1@um.edu.mt (A. Francalanza), annai@ru.is (A. Ingólfsdóttir).

https://doi.org/10.1016/j.scico.2023.103031

Received 14 November 2022; Received in revised form 21 September 2023; Accepted 21 September 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
https://github.com/ScienceofComputerProgramming/SCICO-D-22-00294
https://zenodo.org/record/6418234#.ZEvVZy8Ro04
https://duncanatt.github.io/detecter
mailto:duncanatt@gmail.com
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:luca@ru.is
mailto:luca.aceto@gssi.it
mailto:antonios@ru.is
mailto:duncan.attard.01@um.edu.mt
mailto:duncanpa17@ru.is
mailto:leoe@ru.is
mailto:afra1@um.edu.mt
mailto:annai@ru.is
https://doi.org/10.1016/j.scico.2023.103031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2023.103031&domain=pdf
https://doi.org/10.1016/j.scico.2023.103031

Science of Computer Programming 232 (2024) 103031L. Aceto, A. Achilleos, D.P. Attard et al.

Fig. 1. detectEr runtime monitoring set-up.

the detectEr set-up, where MAXHMLD specifications 𝜑 (step 1) are synthesised as Erlang monitors, M𝜑 (step 2), and instrumented
with the system under scrutiny (SuS). Monitors incrementally analyse the current execution of the SuS (step 3) to reach one of
two irrevocable judgements: accept verdicts (✓) that correspond to satisfactions of MAXHMLD formulae 𝜑, and reject verdicts (✗) that
correspond to violations of 𝜑. detectEr instruments monitors via inlining by weaving them with the SuS to induce minimal runtime
overhead. Fig. 1b depicts an instrumented system where the monitor M𝜑 of Fig. 1a executes together with process S.

Most RV tools use temporal logics based on LTL, e.g. [6–14]. Despite its widespread adoption, LTL has limited expressiveness [15,

3]. For instance, it cannot describe properties such as ‘every odd position in the execution satisfies some proposition p’ (formula 𝜑2 in
sec. 2.2 expresses this requirement). We show how such commonly-occurring properties can be flexibly expressed and monitored
for with detectEr. To the best of our knowledge, the only other tool that runtime checks linear-time properties of Erlang systems is
the proof-of-concept software Elarva that uses automata-based specifications [16]. However, Elarva suffers from severe scalability
issues due to its centralised architecture. By contrast, detectEr can scale under high loads while inducing feasible runtime overhead;
see [17] for details.

2. Overview

Properties in detectEr are specified using a maximally-expressive runtime monitorable fragment [2] of the linear-time modal 𝜇-

calculus [5] called MAXHMLD. This logic describes properties over infinite executions, 𝑢, that abstractly represent complete system
runs.

𝜑,𝜓 ∈ MAXHMLD ∶∶= 𝗍𝗍 (truth) ∣ 𝖿𝖿 (falsehood)

∣ 𝜑∨𝜓 (disjunction) ∣ 𝜑∧𝜓 (conjunction)

∣ ⟨𝑝,𝑒⟩𝜑 (possibility) ∣ [𝑝,𝑒]𝜑 (necessity)

∣ 𝗆𝖺𝗑𝑋.(𝜑) (greatest fp.) ∣ 𝑋 (rec. variable)

Syntax The MAXHMLD syntax assumes a denumerable set of propositional variables, 𝑋, 𝑌∈PVAR. In addition to the standard Boolean
constructs, the logic can express recursive properties as greatest fixed point formulae, 𝗆𝖺𝗑𝑋.(𝜑), that bind the free occurrence of 𝑋
in 𝜑. The existential and universal modalities, ⟨𝑝, 𝑒 ⟩𝜑 and [𝑝, 𝑒]𝜑, respectively express the dual notions of possibility and necessity.

Semantics Modal constructs are interpreted w.r.t. symbolic actions that enable the reasoning over the data carried by system actions
(i.e., events), 𝛼 ∈ ACT. Symbolic actions, written as (𝑝, 𝑒), consist of a pattern, 𝑝, and a decidable Boolean constraint expression, 𝑒.
Patterns are tuples, ⟨𝓁, 𝑥1, … , 𝑥𝑛⟩, comprised of the action label, 𝓁, and pairwise-distinct binders, 𝑥1, … , 𝑥𝑛, that range over Erlang
data types, e.g. tuples, lists, process identifiers (PIDs), etc. Binders bind the free occurrences of 𝑥1, … , 𝑥𝑛 in 𝑒, along with any other
free variables in constraints of the formula continuation 𝜑. These bindings induce the usual notion of scoping, whereby variables
in different sub-formulae can refer to others, making it possible to define relationships between events along the trace. A symbolic
action (𝑝, 𝑒) describes a set of system actions, called the action set. An event is in this set if: (i) the pattern 𝑝 matches the shape of the
action 𝛼, returning a substitution 𝜋 that maps every variable in 𝑝 to corresponding data values in 𝛼, and (ii) the instantiated Boolean
constraint expression 𝑒 𝜋 holds. The existential modal formula ⟨𝑝, 𝑒 ⟩𝜑 describes all the executions 𝛼𝑢 where 𝛼 is in the action set (𝑝, 𝑒)
and 𝑢 satisfies the continuation 𝜑 𝜋. Dually, [𝑝, 𝑒]𝜑 describes all the traces 𝛼𝑢 that, if prefixed by any 𝛼 from the action set (𝑝, 𝑒),
the continuation formula 𝑢 then satisfies 𝜑 𝜋. This means that, in particular, the universal modal formula [𝑝, 𝑒]𝜑 is trivially satisfied
2

whenever 𝛼 is not in the action set (𝑝, 𝑒). Elaborate formulae are built from the basic constituents ⟨𝑝, 𝑒 ⟩𝗍𝗍 and [𝑝, 𝑒]𝖿𝖿 . Intuitively,

Science of Computer Programming 232 (2024) 103031L. Aceto, A. Achilleos, D.P. Attard et al.

Table 1

Actions capturing the behaviour exhibited by Erlang processes.

Action 𝛼 Action pattern 𝑝 Variables Description

fork initialise 𝑥1�𝑥2 ,𝑦1:𝑦2(𝑦3) 𝑥1 PID of the parent process forking 𝑥2
𝑥2�𝑥1 ,𝑦1:𝑦2(𝑦3) 𝑥2 PID of the child process forked by 𝑥1

𝑦1 ,𝑦2,𝑦3 Function signature forked by 𝑥1

error 𝑥1⋆y1 𝑥1 PID of the erroneous process

𝑦1 Error datum, e.g. error reason, etc.

send 𝑥1 ∶ 𝑥2 !y1 𝑥1 PID of the process sending the message

𝑥2 PID of the recipient process

𝑦1 Message datum, e.g. integer, tuple, etc.

receive 𝑥2?y1 𝑥2 PID of the recipient process

𝑦1 Message datum, e.g. integer, tuple, etc.

⟨𝑝, 𝑒 ⟩𝗍𝗍 stipulates that a system can exhibit any action 𝛼 in the action set described by (𝑝, 𝑒), whereas [𝑝, 𝑒]𝖿𝖿 asserts that no action in
(𝑝, 𝑒) is exhibited. Stated formally, ⟨𝑝, 𝑒 ⟩𝗍𝗍 is satisfied exactly by all the executions that start with an action 𝛼 in the action set (𝑝, 𝑒);
dually, [𝑝, 𝑒]𝖿𝖿 is satisfied exactly by all the executions that do not start with 𝛼 in (𝑝, 𝑒). The meaning of the existential and universal
modal constructs ⟨𝑝, 𝑒 ⟩𝜑 and [𝑝, 𝑒]𝜑 is, therefore, the standard one in modal logic; see, for instance, [18]. Finally, the set of traces
satisfying the greatest fixed point formula 𝗆𝖺𝗑𝑋.(𝜑) is the union of all the post-fixed point solutions of the function induced by the
formula 𝜑.

2.1. Adapting the logic to Erlang

We fix the action label set 𝓁 ∈ {�, �, ⋆, !, ?} to model the lifecycle of, and interaction between Erlang processes. The fork action,
�, is exhibited by a process when it creates a child; its dual, �, is exhibited by the child process upon initialisation. An error action,
⋆, signals abnormal process behaviour; send and receive, respectively ! and ?, denote process communication. Table 1 details the
patterns related to these labelled actions, along with the data payload they carry.

The syntax of the specification logic that detectEr uses deviates slightly from the one given above for MAXHMLD to make it more
readable. Concretely, we drop the comma symbol that delimits patterns 𝑝 and Boolean constraint expressions 𝑒 in symbolic actions
in favour of the keyword when, writing (𝑝, 𝑒) as 𝑝 when 𝑒. A Boolean constraint expression 𝑒 can be elided when 𝑒 = true, as can
redundant pattern variables by using the ‘don’t care’ pattern ‘_’. detectEr follows the Erlang syntactic conventions, using capitalised
names for variables. Symbolic actions in modal constructs are enclosed in braces {… }. Our tool also borrows the Erlang guard syntax
to specify Boolean constraint expressions. For instance, the operators or and and are used in lieu of the connectives ∨ and ∧, the
relational operator == instead of =, =/= instead of ≠, etc. See [1] for details.

2.2. Specifying properties in detectEr

Consider the Erlang implementation of a reactive token server 𝑝1, modelled in Fig. 2, which issues client programs with numeric
identification tokens that they use as an alias to write to a remote logging service. Clients request tokens by sending the command
0, which the server fulfils by replying with a new token, NewTok. The token server itself also uses the remote logging service
and is, thus, launched with its reserved identification token 1. Our server starts when its main function, loop, declared in the
Erlang module ts is invoked (state 𝑝1, line 2 in Fig. 2b). From 𝑝1, it transitions to 𝑝3 (line 4), exhibiting the initialisation event
PIDS�PIDP, ts:loop(1,2); the placeholders PIDS and PIDP respectively denote the PID values of the token server process and
of the parent process forking the server. At 𝑝3, the server accepts client requests, consisting of the tuple {PIDC,0}, where PIDC is
the PID of the client, and 0, the command requesting a new identification token, line 5. From state 𝑝4, the server replies with the
3

Fig. 2. Erlang implementation of the token server.

1

2

3

4

5

6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
Science of Computer Programming 232 (2024) 103031L. Aceto, A. Achilleos, D.P. Attard et al.

new token, NewTok on line 6, and transitions back to 𝑝3. This client-server interaction emits the server events PIDS?{PIDC,0} and
PIDS ∶ PIDC !NewTok. When the server fails to load, it transitions with a status of -1 to the sink 𝑝2, thereafter exhibiting undefined
behaviour, shown as the error events PIDS⋆-1 and PIDS⋆ErrorCode in Fig. 2a.

Example 1 There are various properties we want the current execution of our token server of Fig. 2 to observe. For instance, we
require that ‘the server is initialised correctly and with the identifier token 1’, expressed as:

with (𝜑1)
ts:loop(_,_)

check

[{Srv⋆ CodewhenCode==-1}]ff

and

<{Prnt� Srv,ts:loop(Tok,NewTok)whenTok==1}>tt

The symbolic action {Srv ⋆ Code when Code == -1} in the left conjunct of 𝜑1 on line 4, defines the set {Srv⋆-1} of external
system actions. Necessity modal formulae [𝑝 when 𝑒]𝜑 state that for any trace prefix 𝛼 in the action set defined by (𝑝, 𝑒), the trace
continuation 𝑢 must satisfy 𝜑. However, no trace satisfies ff. This means that for server traces not to violate 𝜑1, they must start
with actions 𝛼 ∉ {Srv ⋆ -1}. In other words, either (i) the action 𝛼 must not match the pattern 𝑝, or (ii) if 𝛼 matches 𝑝, the
instantiated Boolean constraint 𝑒 𝜋 must not hold. When the server 𝑝1 exhibits an error at start up, the pattern Srv ⋆ Code yields
the substitution 𝜋=[PIDS∕Srv, -1∕Code] and the instantiated Boolean constraint (Code == -1) 𝜋 holds, leading to a violation of 𝜑1. The
dual argument can be made for the second conjunct of the formula on line 6: if an initialisation event that carries the token value

1 matches the pattern Prnt � Srv, ts:loop(Tok, NewTok) the instantiated constraint Tok == 1 holds, and the existential
modal sub-formula is satisfied. Simultaneously, [{Srv ⋆ Code when Code == -1}] is trivially satisfied since the pattern Srv
⋆ Code does not match the initialisation event. ■

The above example uses the ‘with MFA check 𝜑’ syntax provided by detectEr to pick out processes of the SuS whose execution
is to be runtime checked against the formula 𝜑. MFA designates the Erlang Module exposing the Function that is launched with the
specified Arguments. In this instance, with matches the pattern of the main function loop from our token server module ts that
accepts two arguments. These arguments have been replaced by the ‘don’t care’ pattern ‘_’, and are shown as (_,_) in 𝜑1 on line 2.
The redundant variables Srv, Prnt, and NewTok included in 𝜑1 to elucidate the various placeholders in patterns can be likewise
elided.

Example 2 Amongst the executions satisfying 𝜑1 are those where the server accidentally returns its identification token 1 in reply to
client requests. We therefore demand that ‘the server private token 1 is not leaked in client replies’. Formula 𝜑2 expresses this recursive
property in a general way, i.e., it does not hardcode the token 1. The Boolean constraints 𝑒 = 𝗍𝗍 are elided.

with (𝜑2)
ts:loop(_,_)

check

[{_� _,ts:loop(Tok,_)}]maxX.(

[{_ ? _}](
[{_:_ !NewTokwhenTok==NewTok}]ff

and

[{_:_ !NewTokwhenTok=/=NewTok}] X
)

)

The symbolic action {_ � _, ts:loop(Tok, _)} in the first necessity on line 4 matches initialisation events. It instantiates
the variable Tok with the token value 1 that the server is launched with, and substitutes every occurrence of Tok in the formula
continuation on lines 5–8. Conceptually, this makes this residual sub-formula equivalent to:

maxX.((𝜑′
2)

[{_ ? _}](
[{_:_ !NewTokwhen1 ==NewTok}]ff

and

[{_:_ !NewTokwhen1=/=NewTok}] X
)

)

The greatest fixed point sub-formula describes the client-server interaction loop. It states that this request-response behaviour holds
invariantly throughout the system execution. The symbolic action {_ ? _} in the universal modality on line 12 matches server
receive events resulting from incoming client requests. Lines 13 and 15 check the value of the token issued by the server. The first
conjunct, [_:_ ! NewTok when 1 == NewTok] ff, asserts that the server token stored in NewTok can be anything other than
the value 1, for if it were 1 (i.e., [_:_ ! 1 when 1 == 1] ff), 𝜑2 would be violated. The second conjunct on line 15 specifies the
case where the token value stored in NewTok does not match the value of 1, prompting the recursive sub-formula to unfold anew.
This unfolding yields back the formula 𝜑′

2. Note that a fresh scope for the variable NewTok is created upon every recursive unfolding
4

of 𝜑′
2, enabling NewTok to be instantiated to a new token value. ■

Science of Computer Programming 232 (2024) 103031L. Aceto, A. Achilleos, D.P. Attard et al.

Fig. 3. Instrumentation pipeline for inlined monitors using Erlang source-level weaving.

Formula 𝜑2 compares actions at every odd position in the trace against the one at the head (see line 4). Such formulae cannot be
expressed in LTL, as remarked in sec. 1.

2.3. Monitor synthesis

The synthesis procedure detectEr uses generates executable Erlang monitors from MAXHMLD formulae. Our translation from
formulae to monitors is performed in three stages. First, a formula is parsed into its equivalent abstract syntax tree (AST). This is
then passed to the code generator that visits each of its nodes, mapping every logical construct to a corresponding Erlang description.
The resulting monitor is encoded as an AST to simplify its handling. In the final stage, this AST is forwarded to the Erlang compiler
that generates the monitor source code or BEAM [1] executable. Our synthesis encodes symbolic actions in modal constructs as
Erlang function clauses with guards. This carries two benefits. On the one hand, it enables us to streamline the synthesis and support
most of the Erlang data types, along with its full range of Boolean constraint expression syntax. On the other, organising symbolic
actions as functions leverages the lexical scoping of Erlang, which facilitates our management of pattern variables and their use in
Boolean constraints. detectEr synthesises monitors as templates whose variables become dynamically instantiated at runtime. These
templates are interpreted by our monitoring algorithm: it progressively reduces them based on the trace events analysed until a
verdict is reached. Further technical details regarding the synthesis procedure and monitoring algorithm detectEr uses can be found
in our main paper [4].

2.4. Monitor instrumentation

The inline instrumentation performed by detectEr assumes access to the source code of the SuS. It instruments invocations to
our monitoring algorithm via code injection by manipulating the program AST. We leverage the Erlang compilation pipeline, which
includes a parse transformation phase [19] that offers an optional hook through which the AST can be processed externally, prior
to code generation. This program code modification procedure is outlined in Fig. 3. In step 1 , the Erlang program source code is
preprocessed and parsed into the corresponding AST, step 2 . Subsequently, the AST is passed to the parse transformer in step 3 : this
invokes our custom-built weaver, step 4 , that produces the modified AST′ in step 5 . The decorated AST is compiled by the Erlang
compiler into the program binary in the final stage, step 6 . Note that this compilation phase, as well as the executing SuS, require
two dependencies, namely, the detectEr core modules that include the monitoring algorithm, and the synthesised Erlang monitors.

3. Using detectEr

MAXHMLD formulae such as 𝜑1 and 𝜑2 are written in plain-text script files with a .hml extension. Scripts are compiled to
generate monitors that the SuS can be instrumented with, following the workflow described next.

3.1. Compiling monitor scripts

A MAXHML𝑑 script file is compiled into a monitor using the detectEr function maxhml_eval:compile/2 (by convention,

mod_name:fun_name/arity identifies Erlang functions [19]). This function accepts two arguments:

1. the path pointing to the MAXHMLD .hml script file, and

2. a list of options that control how the monitor is generated.

detectEr script files contain at least one specification that must be terminated with a full-stop; multiple specifications can be placed
in the same file as long as these are separated by commas.

Suppose the formula 𝜑2 is specified in the script file prop_no_leak.hml. The scripted formula can be synthesised into its
5

corresponding monitor by launching the Erlang shell and invoking compile.

1

2

3

4

5

6

7

8

9

10

10

11

12

12

13

14

15

15

16

17

18

19

20

21

22
Science of Computer Programming 232 (2024) 103031L. Aceto, A. Achilleos, D.P. Attard et al.

user@local:detecter/examples/erlang$erl-pa../../detecter/ebin ebin

Erlang/OTP 23[erts-11.2.1][source][64-bit][smp:4:4][ds:4:4:10]

EshellV11.2.1(abort with Ĝ)

1>maxhml_eval:compile("prop_no_leak.hml",[{outdir,"ebin"}]).

ok

The command generates the Erlang monitor file prop_no_leak.beam in the indicated output directory, ebin.

3.2. Inlining

Our server implementation of Fig. 2b is given in the Erlang module ts.erl. We show how this can be instrumented with the
monitor synthesised earlier in sec. 3.1. detectEr offers the functions lin_weaver:weave_file/3 and lin_weaver:weave/3

for this purpose, which inject the SuS with monitors and additional instructions that extract trace events. The first function,

lin_weaver:weave_file/3 instruments a single file; lin_weaver:weave/3 instruments a directory of files. Both variants of

weave accept:

1. the path where the Erlang source file (or directory) to be weaved resides,

2. the function mfa_spec/1 of the monitor to be weaved, and,

3. a list of options that controls how the instrumented system is generated.

The hard-coded function mfa_spec/1 is generated automatically by detectEr as the entry point that launches the monitor runtime
analysis.

Here we use lin_weaver:weave_file/3 to weave the module ts.erl. We specify the arguments to lin_weaver:weave_

file/3, namely, (i) the relative path of the file ts.erl, (ii) entry function of the monitor prop_no_leak, and (iii) the output
directory where the generated monitor is to be written, ebin.

2>lin_weaver:weave_file("ts.erl",funprop_no_leak:mfa_spec/1, ↩

[{outdir,"ebin"}]).

{ok,ts,[]}

3>_

The weaving step produces the compiled token server binary, ts.beam, and loads it into the code path of the Erlang shell.

3.3. Launching the system

Once the token server is instrumented, it can be executed normally by launching it from the Erlang shell. We recall that the

detectEr and synthesised monitor binaries must be loaded in the code path of the Erlang environment, otherwise the instrumented
system fails to load; see sec. 2.4.

3> Pid=ts:start(1).

<0.94.0>

4>_

If the token server is implemented correctly, a new token request by a client instructs the server to issue a valid token (i.e., any value
other than 1). This should not trigger the monitor. A new token is requested by sending (!) the command 0 to the token server with

Pid. The server returns the token 2.

4>Pid!{self(),0}.

{<0.82.0>,0}

Token2.

5>_

Our token server implementation may also be incorrect, in which case the server private token 1 is leaked in client replies. This
results in the monitor flagging a reject verdict that corresponds to a violation of formula 𝜑2.

5>Pid!{self(),0}.

{<0.82.0>,0}

Violation: After analysing event {send, <0.94.0>, <0.82.0>, 1}.

Token1.

6>Pid!{self(),0}.

{<0.82.0>,0}

Violation: After analysing event {send, <0.94.0>, <0.82.0>, 3}.

Token3.

Observe that further requests to the server trigger the same verdict, even if valid tokens are returned from this point onward (e.g. the
token value 3 is issued by the server on line 22, but a violation is flagged regardless). Persisting the monitoring verdict reflects its
6

irrevocability, where once announced, cannot be changed even when analysing future events; see sec. 1.

Science of Computer Programming 232 (2024) 103031L. Aceto, A. Achilleos, D.P. Attard et al.

3.4. Case studies

Our tool has been empirically evaluated in [17] using synthetic benchmarks to quantify the overhead induced by monitors. In
the same work, detectEr is used to monitor an off-the-shelf third-party webserver called Cowboy [20]. Cowboy delegates its socket
management to Ranch (a socket acceptor pool for TCP protocols [21]). In the companion version of this paper, we also validate the
expressiveness of the MAXHMLD by runtime checking fragments of the Cowboy-Ranch interaction protocol. Further details can be
found in [4]. detectEr has also been used to verify parts of the RAFT [22] consensus algorithm written in Elixir [23].

4. Conclusion

This paper showcases detectEr, a monitoring tool that targets software applications developed for Erlang/OTP. Our tool runtime
checks linear-time specifications that describe properties about the current system execution. The examples considered show how
the logic can express recursive properties, and how symbolic actions enable the reasoning on data carried by trace events. We
outline how detectEr synthesises executable monitors that are instrumented via inlining to minimise runtime overhead. Our case
studies [17,4,23] demonstrate that the logic is sufficiently expressive to describe properties of real-world software. More information
about the tool can be found on the detectEr website [24].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

Supported by the doctoral student grant (No: 207055) and the MoVeMnt project (No: 217987) of the Icelandic Research Fund,
the ENDEAVOUR Scholarship Scheme (Group B, national funds), the BehAPI project funded by the EU H2020 RISE of the Marie
Skłodowska-Curie action (No: 778233), and the MIUR project PRIN 2017FTXR7S IT MATTERS.

References

[1] J. Armstrong, Programming Erlang: Software for a Concurrent World, Pragmatic Bookshelf, 2007.

[2] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, K. Lehtinen, Adventures in monitorability: from branching to linear time and back again, Proc. ACM
Program. Lang. 3 (POPL) (2019) 52.

[3] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, K. Lehtinen, An operational guide to monitorability with applications to regular properties, Softw. Syst.
Model. 20 (2) (2021) 335–361.

[4] L. Aceto, A. Achilleos, D.P. Attard, L. Exibard, A. Francalanza, A. Ingólfsdóttir, A monitoring tool for linear-time 𝜇HML, in: COORDINATION, in: LNCS, vol. 13271,
Springer, 2022, pp. 200–219.

[5] D. Kozen, Results on the propositional 𝜇-calculus, in: ICALP, in: LNCS, vol. 140, 1982, pp. 348–359.

[6] A. Bauer, M. Leucker, C. Schallhart, Runtime verification for LTL and TLTL, ACM Trans. Softw. Eng. Methodol. 20 (4) (2011) 14.

[7] A. Bauer, M. Leucker, C. Schallhart, Comparing LTL semantics for runtime verification, J. Log. Comput. 20 (3) (2010) 651–674.

[8] A. Bauer, Y. Falcone, Decentralised LTL monitoring, Form. Methods Syst. Des. 48 (1–2) (2016) 46–93.

[9] B. Bonakdarpour, P. Fraigniaud, S. Rajsbaum, D.A. Rosenblueth, C. Travers, Decentralized asynchronous crash-resilient runtime verification, in: CONCUR, in:
LIPIcs, vol. 59, Schloss Dagstuhl - Leibniz-Zentrum Für Informatik, 2016, pp. 16:1–16:15.

[10] D.A. Basin, F. Klaedtke, E. Zalinescu, Failure-aware runtime verification of distributed systems, in: FSTTCS, in: LIPIcs, vol. 45, Schloss Dagstuhl - Leibniz-Zentrum
Für Informatik, 2015, pp. 590–603.

[11] K. Havelund, D. Peled, Runtime verification: from propositional to first-order temporal logic, in: RV, in: LNCS, vol. 11237, Springer, 2018, pp. 90–112.

[12] K. Sen, A. Vardhan, G. Agha, G. Rosu, Efficient decentralized monitoring of safety in distributed systems, in: ICSE, 2004, pp. 418–427.

[13] K. Sen, A. Vardhan, G. Agha, G. Rosu, Decentralized runtime analysis of multithreaded applications, in: IPDPS, IEEE, 2006.

[14] T. Scheffel, M. Schmitz, Three-valued asynchronous distributed runtime verification, in: MEMOCODE, 2014, pp. 52–61.

[15] P. Wolper, Temporal logic can be more expressive, Inf. Control 56 (1/2) (1983) 72–99.

[16] C. Colombo, A. Francalanza, R. Gatt, Elarva: a monitoring tool for Erlang, in: RV, in: LNCS, vol. 7186, Springer, 2011, pp. 370–374.

[17] L. Aceto, D.P. Attard, A. Francalanza, A. Ingólfsdóttir, On benchmarking for concurrent runtime verification, in: FASE, in: LNCS, vol. 12649, 2021, pp. 3–23.

[18] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge Tracts in Theoretical Computer Science, vol. 53, Cambridge University Press, 2001.

[19] F. Cesarini, S. Thompson, Erlang Programming: A Concurrent Approach to Software Development, O’Reilly Media, 2009.

[20] L. Hoguin, Cowboy, https://ninenines .eu, 2020.

[21] L. Hoguin, Ranch, https://ninenines .eu, 2020.

[22] D. Ongaro, J.K. Ousterhout, In search of an understandable consensus algorithm, in: USENIX Annual Technical Conference, 2014, pp. 305–319.

[23] M.A. Le Brun, D.P. Attard, A. Francalanza, Graft: general purpose RAFT consensus in elixir, in: Erlang Workshop, 2021, pp. 2–14.
7

[24] D.P. Attard, Detecter, https://duncanatt .github .io /detecter /detecter -linear -time /setting -up -detecter .html, 2022.

http://refhub.elsevier.com/S0167-6423(23)00113-2/bib92B9694D1ED4654CB88F5F33948796E8s1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bib0667E80DB685A0CCF4C979A7BEEA9938s1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bib0667E80DB685A0CCF4C979A7BEEA9938s1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bib67B7A69472625FEC0C90B7E29A21D009s1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bib67B7A69472625FEC0C90B7E29A21D009s1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bibC3F8A8EF6CF17AB5B1B5B108C81ECA4Ds1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bibC3F8A8EF6CF17AB5B1B5B108C81ECA4Ds1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bibC0B223B4164D608CB5E03CEBC04B745Bs1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bib10FF3DEE058A1559B8B3011773EBD5B9s1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bib2461D30C6B0157701B7524E08EA28692s1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bib6589FC37B4E837D5725C69F4EDB2FA26s1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bib078F94556A791A3C2A6339D1FA30B222s1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bib078F94556A791A3C2A6339D1FA30B222s1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bibCFDD45F35B4C870E2637B77B1FED5547s1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bibCFDD45F35B4C870E2637B77B1FED5547s1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bib1E793BE33B389B1F3BCCBA736478534Bs1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bibF95675B41C2A6BFA7778FED1CAD5C6B9s1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bibA0B28ADD85F5E8CA2246195587482E90s1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bib6EE5BB91871C9FDCD828E6ACD673AE8Ds1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bib8CE483494BD2696418466EC5788783DAs1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bibA20C34DD52A5840EF5101DBDE244DB2Cs1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bibA37A023D20D79A8BFE9FBE1AB7198ECFs1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bib2671ACCE16617D6EE06859326A1B4F01s1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bib7664CAEAE7412C8EF49C71ABAAB5D0B5s1
https://ninenines.eu
https://ninenines.eu
http://refhub.elsevier.com/S0167-6423(23)00113-2/bib8655F2C2801CD077EC51F52FA3A8D56Fs1
http://refhub.elsevier.com/S0167-6423(23)00113-2/bib2E0EEB7445CEB1CF46BA32D3A282CCC3s1
https://duncanatt.github.io/detecter/detecter-linear-time/setting-up-detecter.html

	A monitoring tool for linear-time μHML
	1 Motivation and significance
	2 Overview
	2.1 Adapting the logic to Erlang
	2.2 Specifying properties in detectEr
	2.3 Monitor synthesis
	2.4 Monitor instrumentation

	3 Using detectEr
	3.1 Compiling monitor scripts
	3.2 Inlining
	3.3 Launching the system
	3.4 Case studies

	4 Conclusion
	Declaration of competing interest
	Acknowledgements
	References

