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𝜇-calculus called MAXHMLD, used to describe properties about the current system execution. Our 
technical development is founded on previous theoretical results that are lifted to a first-order 
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executable Erlang monitors that can be instrumented with the running system.

Code metadata

Code metadata description

Current code version 0.9

Permanent link to code/repository used for this code version https://github.com/ScienceofComputerProgramming/SCICO-D-22-00294

Permanent link to Reproducible Capsule https://zenodo.org/record/6418234#.ZEvVZy8Ro04

Legal Code License GPL-3.0 license

Code versioning system used git

Software code languages, tools, and services used Erlang

Compilation requirements, operating environments and dependencies Linux, macOS, Windows, and Erlang

If available, link to developer documentation/manual https://duncanatt.github.io/detecter

Support email for questions duncanatt@gmail.com

1. Motivation and significance

This paper presents detectEr, a runtime verification (RV) tool that targets software applications written for the Erlang/OTP [1].

detectEr builds on the theoretical foundations of [2,3], which are lifted to a first-order setting [4] to handle systems that operate on 
data. Our tool adopts the logic fragment MAXHMLD to specify properties about the current system execution [5]. Fig. 1a illustrates 
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Fig. 1. detectEr runtime monitoring set-up.

the detectEr set-up, where MAXHMLD specifications 𝜑 (step 1 ) are synthesised as Erlang monitors, M𝜑 (step 2 ), and instrumented 
with the system under scrutiny (SuS). Monitors incrementally analyse the current execution of the SuS (step 3 ) to reach one of 
two irrevocable judgements: accept verdicts (✓) that correspond to satisfactions of MAXHMLD formulae 𝜑, and reject verdicts (✗) that 
correspond to violations of 𝜑. detectEr instruments monitors via inlining by weaving them with the SuS to induce minimal runtime 
overhead. Fig. 1b depicts an instrumented system where the monitor M𝜑 of Fig. 1a executes together with process S.

Most RV tools use temporal logics based on LTL, e.g. [6–14]. Despite its widespread adoption, LTL has limited expressiveness [15,

3]. For instance, it cannot describe properties such as ‘every odd position in the execution satisfies some proposition p’ (formula 𝜑2 in 
sec. 2.2 expresses this requirement). We show how such commonly-occurring properties can be flexibly expressed and monitored 
for with detectEr. To the best of our knowledge, the only other tool that runtime checks linear-time properties of Erlang systems is 
the proof-of-concept software Elarva that uses automata-based specifications [16]. However, Elarva suffers from severe scalability 
issues due to its centralised architecture. By contrast, detectEr can scale under high loads while inducing feasible runtime overhead; 
see [17] for details.

2. Overview

Properties in detectEr are specified using a maximally-expressive runtime monitorable fragment [2] of the linear-time modal 𝜇-

calculus [5] called MAXHMLD. This logic describes properties over infinite executions, 𝑢, that abstractly represent complete system 
runs.

𝜑,𝜓 ∈ MAXHMLD ∶∶= 𝗍𝗍 (truth) ∣ 𝖿𝖿 (falsehood)

∣ 𝜑∨𝜓 (disjunction) ∣ 𝜑∧𝜓 (conjunction)

∣ ⟨𝑝,𝑒⟩𝜑 (possibility) ∣ [𝑝,𝑒]𝜑 (necessity)

∣ 𝗆𝖺𝗑𝑋.(𝜑) (greatest fp.) ∣ 𝑋 (rec. variable)

Syntax The MAXHMLD syntax assumes a denumerable set of propositional variables, 𝑋, 𝑌∈PVAR. In addition to the standard Boolean 
constructs, the logic can express recursive properties as greatest fixed point formulae, 𝗆𝖺𝗑𝑋.(𝜑), that bind the free occurrence of 𝑋
in 𝜑. The existential and universal modalities, ⟨𝑝, 𝑒 ⟩𝜑 and [𝑝, 𝑒 ]𝜑, respectively express the dual notions of possibility and necessity.

Semantics Modal constructs are interpreted w.r.t. symbolic actions that enable the reasoning over the data carried by system actions 
(i.e., events), 𝛼 ∈ ACT. Symbolic actions, written as (𝑝, 𝑒), consist of a pattern, 𝑝, and a decidable Boolean constraint expression, 𝑒. 
Patterns are tuples, ⟨𝓁, 𝑥1, … , 𝑥𝑛⟩, comprised of the action label, 𝓁, and pairwise-distinct binders, 𝑥1, … , 𝑥𝑛, that range over Erlang 
data types, e.g. tuples, lists, process identifiers (PIDs), etc. Binders bind the free occurrences of 𝑥1, … , 𝑥𝑛 in 𝑒, along with any other 
free variables in constraints of the formula continuation 𝜑. These bindings induce the usual notion of scoping, whereby variables 
in different sub-formulae can refer to others, making it possible to define relationships between events along the trace. A symbolic 
action (𝑝, 𝑒) describes a set of system actions, called the action set. An event is in this set if: (i) the pattern 𝑝 matches the shape of the 
action 𝛼, returning a substitution 𝜋 that maps every variable in 𝑝 to corresponding data values in 𝛼, and (ii) the instantiated Boolean 
constraint expression 𝑒 𝜋 holds. The existential modal formula ⟨𝑝, 𝑒 ⟩𝜑 describes all the executions 𝛼𝑢 where 𝛼 is in the action set (𝑝, 𝑒)
and 𝑢 satisfies the continuation 𝜑 𝜋. Dually, [𝑝, 𝑒 ]𝜑 describes all the traces 𝛼𝑢 that, if prefixed by any 𝛼 from the action set (𝑝, 𝑒), 
the continuation formula 𝑢 then satisfies 𝜑 𝜋. This means that, in particular, the universal modal formula [𝑝, 𝑒 ]𝜑 is trivially satisfied 
2

whenever 𝛼 is not in the action set (𝑝, 𝑒). Elaborate formulae are built from the basic constituents ⟨𝑝, 𝑒 ⟩𝗍𝗍 and [𝑝, 𝑒 ]𝖿𝖿 . Intuitively, 
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Table 1

Actions capturing the behaviour exhibited by Erlang processes.

Action 𝛼 Action pattern 𝑝 Variables Description

fork initialise 𝑥1�𝑥2 ,𝑦1:𝑦2(𝑦3) 𝑥1 PID of the parent process forking 𝑥2
𝑥2�𝑥1 ,𝑦1:𝑦2(𝑦3) 𝑥2 PID of the child process forked by 𝑥1

𝑦1 ,𝑦2,𝑦3 Function signature forked by 𝑥1

error 𝑥1⋆y1 𝑥1 PID of the erroneous process

𝑦1 Error datum, e.g. error reason, etc.

send 𝑥1 ∶ 𝑥2 !y1 𝑥1 PID of the process sending the message

𝑥2 PID of the recipient process

𝑦1 Message datum, e.g. integer, tuple, etc.

receive 𝑥2?y1 𝑥2 PID of the recipient process

𝑦1 Message datum, e.g. integer, tuple, etc.

⟨𝑝, 𝑒 ⟩𝗍𝗍 stipulates that a system can exhibit any action 𝛼 in the action set described by (𝑝, 𝑒), whereas [𝑝, 𝑒 ]𝖿𝖿 asserts that no action in 
(𝑝, 𝑒) is exhibited. Stated formally, ⟨𝑝, 𝑒 ⟩𝗍𝗍 is satisfied exactly by all the executions that start with an action 𝛼 in the action set (𝑝, 𝑒); 
dually, [𝑝, 𝑒 ]𝖿𝖿 is satisfied exactly by all the executions that do not start with 𝛼 in (𝑝, 𝑒). The meaning of the existential and universal 
modal constructs ⟨𝑝, 𝑒 ⟩𝜑 and [𝑝, 𝑒 ]𝜑 is, therefore, the standard one in modal logic; see, for instance, [18]. Finally, the set of traces 
satisfying the greatest fixed point formula 𝗆𝖺𝗑𝑋.(𝜑) is the union of all the post-fixed point solutions of the function induced by the 
formula 𝜑.

2.1. Adapting the logic to Erlang

We fix the action label set 𝓁 ∈ {�, �, ⋆, !, ?} to model the lifecycle of, and interaction between Erlang processes. The fork action, 
�, is exhibited by a process when it creates a child; its dual, �, is exhibited by the child process upon initialisation. An error action, 
⋆, signals abnormal process behaviour; send and receive, respectively ! and ?, denote process communication. Table 1 details the 
patterns related to these labelled actions, along with the data payload they carry.

The syntax of the specification logic that detectEr uses deviates slightly from the one given above for MAXHMLD to make it more 
readable. Concretely, we drop the comma symbol that delimits patterns 𝑝 and Boolean constraint expressions 𝑒 in symbolic actions 
in favour of the keyword when, writing (𝑝, 𝑒) as 𝑝 when 𝑒. A Boolean constraint expression 𝑒 can be elided when 𝑒 = true, as can 
redundant pattern variables by using the ‘don’t care’ pattern ‘_’. detectEr follows the Erlang syntactic conventions, using capitalised 
names for variables. Symbolic actions in modal constructs are enclosed in braces {… }. Our tool also borrows the Erlang guard syntax 
to specify Boolean constraint expressions. For instance, the operators or and and are used in lieu of the connectives ∨ and ∧, the 
relational operator == instead of =, =/= instead of ≠, etc. See [1] for details.

2.2. Specifying properties in detectEr

Consider the Erlang implementation of a reactive token server 𝑝1, modelled in Fig. 2, which issues client programs with numeric 
identification tokens that they use as an alias to write to a remote logging service. Clients request tokens by sending the command 
0, which the server fulfils by replying with a new token, NewTok. The token server itself also uses the remote logging service 
and is, thus, launched with its reserved identification token 1. Our server starts when its main function, loop, declared in the 
Erlang module ts is invoked (state 𝑝1, line 2 in Fig. 2b). From 𝑝1, it transitions to 𝑝3 (line 4), exhibiting the initialisation event 
PIDS�PIDP, ts:loop(1,2); the placeholders PIDS and PIDP respectively denote the PID values of the token server process and 
of the parent process forking the server. At 𝑝3, the server accepts client requests, consisting of the tuple {PIDC,0}, where PIDC is 
the PID of the client, and 0, the command requesting a new identification token, line 5. From state 𝑝4, the server replies with the 
3

Fig. 2. Erlang implementation of the token server.
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new token, NewTok on line 6, and transitions back to 𝑝3. This client-server interaction emits the server events PIDS?{PIDC,0} and 
PIDS ∶ PIDC !NewTok. When the server fails to load, it transitions with a status of -1 to the sink 𝑝2, thereafter exhibiting undefined 
behaviour, shown as the error events PIDS⋆-1 and PIDS⋆ErrorCode in Fig. 2a.

Example 1 There are various properties we want the current execution of our token server of Fig. 2 to observe. For instance, we 
require that ‘the server is initialised correctly and with the identifier token 1’, expressed as:

with (𝜑1 )
ts:loop(_,_)

check

[{Srv⋆ CodewhenCode==-1}]ff

and

<{Prnt� Srv,ts:loop(Tok,NewTok)whenTok==1}>tt

The symbolic action {Srv ⋆ Code when Code == -1} in the left conjunct of 𝜑1 on line 4, defines the set {Srv⋆-1} of external 
system actions. Necessity modal formulae [𝑝 when 𝑒 ]𝜑 state that for any trace prefix 𝛼 in the action set defined by (𝑝, 𝑒), the trace 
continuation 𝑢 must satisfy 𝜑. However, no trace satisfies ff. This means that for server traces not to violate 𝜑1, they must start 
with actions 𝛼 ∉ {Srv ⋆ -1}. In other words, either (i) the action 𝛼 must not match the pattern 𝑝, or (ii) if 𝛼 matches 𝑝, the 
instantiated Boolean constraint 𝑒 𝜋 must not hold. When the server 𝑝1 exhibits an error at start up, the pattern Srv ⋆ Code yields 
the substitution 𝜋=[PIDS∕Srv, -1∕Code] and the instantiated Boolean constraint (Code == -1) 𝜋 holds, leading to a violation of 𝜑1. The 
dual argument can be made for the second conjunct of the formula on line 6: if an initialisation event that carries the token value

1 matches the pattern Prnt � Srv, ts:loop(Tok, NewTok) the instantiated constraint Tok == 1 holds, and the existential 
modal sub-formula is satisfied. Simultaneously, [{Srv ⋆ Code when Code == -1}] is trivially satisfied since the pattern Srv
⋆ Code does not match the initialisation event. ■

The above example uses the ‘with MFA check 𝜑’ syntax provided by detectEr to pick out processes of the SuS whose execution 
is to be runtime checked against the formula 𝜑. MFA designates the Erlang Module exposing the Function that is launched with the 
specified Arguments. In this instance, with matches the pattern of the main function loop from our token server module ts that 
accepts two arguments. These arguments have been replaced by the ‘don’t care’ pattern ‘_’, and are shown as (_,_) in 𝜑1 on line 2. 
The redundant variables Srv, Prnt, and NewTok included in 𝜑1 to elucidate the various placeholders in patterns can be likewise 
elided.

Example 2 Amongst the executions satisfying 𝜑1 are those where the server accidentally returns its identification token 1 in reply to 
client requests. We therefore demand that ‘the server private token 1 is not leaked in client replies’. Formula 𝜑2 expresses this recursive 
property in a general way, i.e., it does not hardcode the token 1. The Boolean constraints 𝑒 = 𝗍𝗍 are elided.

with (𝜑2 )
ts:loop(_,_)

check

[{_� _,ts:loop(Tok,_)}]maxX.(

[{_ ? _}](
[{_:_ !NewTokwhenTok==NewTok}]ff

and

[{_:_ !NewTokwhenTok=/=NewTok}] X
)

)

The symbolic action {_ � _, ts:loop(Tok, _)} in the first necessity on line 4 matches initialisation events. It instantiates 
the variable Tok with the token value 1 that the server is launched with, and substitutes every occurrence of Tok in the formula 
continuation on lines 5–8. Conceptually, this makes this residual sub-formula equivalent to:

maxX.( (𝜑′
2)

[{_ ? _}](
[{_:_ !NewTokwhen1 ==NewTok}]ff

and

[{_:_ !NewTokwhen1=/=NewTok}] X
)

)

The greatest fixed point sub-formula describes the client-server interaction loop. It states that this request-response behaviour holds 
invariantly throughout the system execution. The symbolic action {_ ? _} in the universal modality on line 12 matches server 
receive events resulting from incoming client requests. Lines 13 and 15 check the value of the token issued by the server. The first 
conjunct, [_:_ ! NewTok when 1 == NewTok] ff, asserts that the server token stored in NewTok can be anything other than 
the value 1, for if it were 1 (i.e., [_:_ ! 1 when 1 == 1] ff), 𝜑2 would be violated. The second conjunct on line 15 specifies the 
case where the token value stored in NewTok does not match the value of 1, prompting the recursive sub-formula to unfold anew. 
This unfolding yields back the formula 𝜑′

2. Note that a fresh scope for the variable NewTok is created upon every recursive unfolding 
4

of 𝜑′
2, enabling NewTok to be instantiated to a new token value. ■



Science of Computer Programming 232 (2024) 103031L. Aceto, A. Achilleos, D.P. Attard et al.

Fig. 3. Instrumentation pipeline for inlined monitors using Erlang source-level weaving.

Formula 𝜑2 compares actions at every odd position in the trace against the one at the head (see line 4). Such formulae cannot be 
expressed in LTL, as remarked in sec. 1.

2.3. Monitor synthesis

The synthesis procedure detectEr uses generates executable Erlang monitors from MAXHMLD formulae. Our translation from 
formulae to monitors is performed in three stages. First, a formula is parsed into its equivalent abstract syntax tree (AST). This is 
then passed to the code generator that visits each of its nodes, mapping every logical construct to a corresponding Erlang description. 
The resulting monitor is encoded as an AST to simplify its handling. In the final stage, this AST is forwarded to the Erlang compiler 
that generates the monitor source code or BEAM [1] executable. Our synthesis encodes symbolic actions in modal constructs as 
Erlang function clauses with guards. This carries two benefits. On the one hand, it enables us to streamline the synthesis and support 
most of the Erlang data types, along with its full range of Boolean constraint expression syntax. On the other, organising symbolic 
actions as functions leverages the lexical scoping of Erlang, which facilitates our management of pattern variables and their use in 
Boolean constraints. detectEr synthesises monitors as templates whose variables become dynamically instantiated at runtime. These 
templates are interpreted by our monitoring algorithm: it progressively reduces them based on the trace events analysed until a 
verdict is reached. Further technical details regarding the synthesis procedure and monitoring algorithm detectEr uses can be found 
in our main paper [4].

2.4. Monitor instrumentation

The inline instrumentation performed by detectEr assumes access to the source code of the SuS. It instruments invocations to 
our monitoring algorithm via code injection by manipulating the program AST. We leverage the Erlang compilation pipeline, which 
includes a parse transformation phase [19] that offers an optional hook through which the AST can be processed externally, prior 
to code generation. This program code modification procedure is outlined in Fig. 3. In step 1 , the Erlang program source code is 
preprocessed and parsed into the corresponding AST, step 2 . Subsequently, the AST is passed to the parse transformer in step 3 : this 
invokes our custom-built weaver, step 4 , that produces the modified AST′ in step 5 . The decorated AST is compiled by the Erlang 
compiler into the program binary in the final stage, step 6 . Note that this compilation phase, as well as the executing SuS, require 
two dependencies, namely, the detectEr core modules that include the monitoring algorithm, and the synthesised Erlang monitors.

3. Using detectEr

MAXHMLD formulae such as 𝜑1 and 𝜑2 are written in plain-text script files with a .hml extension. Scripts are compiled to 
generate monitors that the SuS can be instrumented with, following the workflow described next.

3.1. Compiling monitor scripts

A MAXHML𝑑 script file is compiled into a monitor using the detectEr function maxhml_eval:compile/2 (by convention,

mod_name:fun_name/arity identifies Erlang functions [19]). This function accepts two arguments:

1. the path pointing to the MAXHMLD .hml script file, and

2. a list of options that control how the monitor is generated.

detectEr script files contain at least one specification that must be terminated with a full-stop; multiple specifications can be placed 
in the same file as long as these are separated by commas.

Suppose the formula 𝜑2 is specified in the script file prop_no_leak.hml. The scripted formula can be synthesised into its 
5

corresponding monitor by launching the Erlang shell and invoking compile.
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user@local:detecter/examples/erlang$erl-pa../../detecter/ebin ebin

Erlang/OTP 23[erts-11.2.1][source][64-bit][smp:4:4][ds:4:4:10]

EshellV11.2.1(abort with Ĝ)

1>maxhml_eval:compile("prop_no_leak.hml",[{outdir,"ebin"}]).

ok

The command generates the Erlang monitor file prop_no_leak.beam in the indicated output directory, ebin.

3.2. Inlining

Our server implementation of Fig. 2b is given in the Erlang module ts.erl. We show how this can be instrumented with the 
monitor synthesised earlier in sec. 3.1. detectEr offers the functions lin_weaver:weave_file/3 and lin_weaver:weave/3

for this purpose, which inject the SuS with monitors and additional instructions that extract trace events. The first function,

lin_weaver:weave_file/3 instruments a single file; lin_weaver:weave/3 instruments a directory of files. Both variants of

weave accept:

1. the path where the Erlang source file (or directory) to be weaved resides,

2. the function mfa_spec/1 of the monitor to be weaved, and,

3. a list of options that controls how the instrumented system is generated.

The hard-coded function mfa_spec/1 is generated automatically by detectEr as the entry point that launches the monitor runtime 
analysis.

Here we use lin_weaver:weave_file/3 to weave the module ts.erl. We specify the arguments to lin_weaver:weave_

file/3, namely, (i) the relative path of the file ts.erl, (ii) entry function of the monitor prop_no_leak, and (iii) the output 
directory where the generated monitor is to be written, ebin.

2>lin_weaver:weave_file("ts.erl",funprop_no_leak:mfa_spec/1, ↩

[{outdir,"ebin"}]).

{ok,ts,[]}

3>_

The weaving step produces the compiled token server binary, ts.beam, and loads it into the code path of the Erlang shell.

3.3. Launching the system

Once the token server is instrumented, it can be executed normally by launching it from the Erlang shell. We recall that the

detectEr and synthesised monitor binaries must be loaded in the code path of the Erlang environment, otherwise the instrumented 
system fails to load; see sec. 2.4.

3> Pid=ts:start(1).

<0.94.0>

4>_

If the token server is implemented correctly, a new token request by a client instructs the server to issue a valid token (i.e., any value 
other than 1). This should not trigger the monitor. A new token is requested by sending (!) the command 0 to the token server with

Pid. The server returns the token 2.

4>Pid!{self(),0}.

{<0.82.0>,0}

Token2.

5>_

Our token server implementation may also be incorrect, in which case the server private token 1 is leaked in client replies. This 
results in the monitor flagging a reject verdict that corresponds to a violation of formula 𝜑2.

5>Pid!{self(),0}.

{<0.82.0>,0}

Violation: After analysing event {send, <0.94.0>, <0.82.0>, 1}.

Token1.

6>Pid!{self(),0}.

{<0.82.0>,0}

Violation: After analysing event {send, <0.94.0>, <0.82.0>, 3}.

Token3.

Observe that further requests to the server trigger the same verdict, even if valid tokens are returned from this point onward (e.g. the 
token value 3 is issued by the server on line 22, but a violation is flagged regardless). Persisting the monitoring verdict reflects its 
6

irrevocability, where once announced, cannot be changed even when analysing future events; see sec. 1.
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3.4. Case studies

Our tool has been empirically evaluated in [17] using synthetic benchmarks to quantify the overhead induced by monitors. In 
the same work, detectEr is used to monitor an off-the-shelf third-party webserver called Cowboy [20]. Cowboy delegates its socket 
management to Ranch (a socket acceptor pool for TCP protocols [21]). In the companion version of this paper, we also validate the 
expressiveness of the MAXHMLD by runtime checking fragments of the Cowboy-Ranch interaction protocol. Further details can be 
found in [4]. detectEr has also been used to verify parts of the RAFT [22] consensus algorithm written in Elixir [23].

4. Conclusion

This paper showcases detectEr, a monitoring tool that targets software applications developed for Erlang/OTP. Our tool runtime 
checks linear-time specifications that describe properties about the current system execution. The examples considered show how 
the logic can express recursive properties, and how symbolic actions enable the reasoning on data carried by trace events. We 
outline how detectEr synthesises executable monitors that are instrumented via inlining to minimise runtime overhead. Our case 
studies [17,4,23] demonstrate that the logic is sufficiently expressive to describe properties of real-world software. More information 
about the tool can be found on the detectEr website [24].
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